\begin{tabbing} t\_iterate($l$;$n$;$t$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=Case($t$)\+ \\[0ex]Case\= $x$;$y$ =$>$\+ \\[0ex]$n$(t\_iterate($l$;$n$;$x$),t\_iterate($l$;$n$;$y$)) \-\\[0ex]Case\= tree\_leaf($x$) =$>$\+ \\[0ex]$l$($x$) \-\\[0ex]Default =$>$ True \-\\[0ex]\emph{(recursive)} \end{tabbing}